Lesson 1.3 \& Lesson 1.4 Warm Up (Clickers)

1. Which property is being illustrated below?

$$
(3+f)+9=3+(f+9)
$$

2. What number system does the following belong to (name all that apply)?
a. 1.345
b. -3
c. 59
3. Solve the equation:
$3 x-9=12 x+4$

Lesson 1.3 Algebraic Expressions \& Lesson 1.4 Solving Equations

Essential Understanding: You can represent some

 mathematical phrases and real-world quantities using algebraic expressions.Ex. Which algebraic expression models the word phrase seven fewer than a number t?
a. $\dagger+7$
b. $-7 \dagger$
c. $\dagger-7$
d. $7-\dagger$

1 Which algebraic expression models the word phrase two times the sum of a and b ?
$A a+b$
B $2(a+b)$
C $2 a+b$

D $a+2 b$

Ex. You start with \$20 and save \$6 each week. Write an algebraic expression that models the total amount you save.

2 You had \$150, but you are spending $\$ 2$ each day. What algebraic expression models this situation?

To evaluate an algebraic expression, substitute a number for each variable in the expression. Then simplify using the order of operations.

Ex. Evaluate $7(a+4)+3 b-8$ for $a=-4$ and $b=5$

3 Evaluate for $x=1$ and $y=1 / 2$ (put your answer in as a fraction)
$\frac{x}{2}+y^{2}$

An expression that is a number, a variable, or the product of a number and one or more variables is a term. A coefficient is the numerical factor of a term. A constant term is a term with no variables.

Like terms have the same variables raised to the same powers. You can simplify an algebraic expression that has like terms.
like terms like terms
$3 x^{2}+5 x^{2}+9 y^{3} z+2 y z-4 y^{3} z$

Ex. Simplify

b. $-(3 k+m)+2(k-4 m)$
a. $7 x^{2}+3 y^{2}+2 y^{2}-4 x^{2}$

Lesson 1.4 Essential Understanding: You can use the properties of equality and inverse operations to solve equations.

Pre hore Properties Properties of Equality

Property	Definition	Example
Reflexive	$a=a$	$5=5$
Symmetric	If $a=b$, then $b=a$.	If $\frac{1}{2}=0.5$, then $0.5=\frac{1}{2}$.
Transitive	If $a=b$ and $b=c$, then $a=c$.	If $2.5=2 \frac{1}{2}$ and $2 \frac{1}{2}=\frac{5}{2}$, then $2.5=\frac{5}{2}$.
Substitution	If $a=b$, then you can replace a with h and vice versa.	If $a=b$ and $9+a=15$, then $9+h=1.5$.
Addition	If $a=b$, then $a+c=b+c$.	If $x=12$, then $x+3=12+3$.
Subtraction	If $a=b$, then $a-c=b-c$.	If $x=12$, then $x-3=12-3$.
Multiplication	If $a=b$, then $a \cdot c=b \cdot c$.	If $x=12$, then $x \cdot 3=12 \cdot 3$.
Division	If $a=b$, then $a \div c=b \div c$ (with $c \neq 0$).	If $x=12$, then $x \div 3=12 \div 3$.

Ex. Solve $-27+6 y=3(y-3)$

Solve: $6 x-3-2(3 x+4)=11 x$

Ex. Flower carpets incorporate hundreds of thousands of brightlycolored flowers as well as grass, tree bark, and sometimes fountains to form intricate designs and motifs. The flower carpet below, from Grand Place in Brussels, Belgium, has a perimeter of 200 meters. What are the dimensions of the flower carpet?

A literal equation is an equation that uses at least two different letters as variables. You can then solve for any of the variables in the equation.

Ex. The equation $C=\frac{5}{9}(F-32)$ relates temperatures in degrees Fahrenheit F and degrees Celsius C. What is F in terms of C ?

8 The equation $K=C+273$ relates temperatures kelvins K and degrees Celsius C. What is C in terms of K ?

