Lesson 1.6 Warm Up (Clickers)

1. Solve and graph: $-5 x-3+2 x>9$
2. Evaluate: $|2 x-5|$ when $x=-1$
3. Solve and graph: $9<3 x-5 \leq 13$

Lesson 1.6 Absolute Value Equations \& Inequalities

Essential Understanding: An absolute value quantity is nonnegative. Since opposites have the same absolute value, an absolute value equation can have two solutions.

| The absolute value of a real number x, written $\|x\|$, | $\|4\|=4$ | $\|x\|=x$, if $x \geq 0$ |
| :--- | :--- | :--- | :--- |
| is its distance from zero on the number line. | $\|-4\|=4$ | $\|x\|=-x$, if $x<0$ |

An absolute value equation has a variable within the absolute alue sign. For example, $|x|=5$. Here, the value of x can be 5 or -5 since $|5|$ and $|-5|$ both equal 5 .

Ex. What is the solution of $|2 x-1|=5$?
Graph the solution.

Ex. Solve $|3 x+2|=4$? Graph the solutions.

1 Solve: $|2 x+5|=9$
Separate your answers with a comma.

2 Solve $2|x+9|+3=7$. Separate your answers with a comma.

Ex. Solve: $3|x+2|-1=8$

Distance from 0 on the number line cannot be negative. Therefore, some absolute value equations, such as $|x|=-5$, have no solution. It is important to check the possible solutions of an absolute value equation. one ore more of the possible solutions may be extraneous.

An extraneous solution is a solution derived from an original equation that is not a solution of the original equation.

Ex. What is the solution of $|3 x+2|=4 x+5$? Check for extraneous solutions.

3 What is the solution of $|5 x-2|=7 x+14$? Check for extraneous solutions.

Lesson 1.6 Day 2 Warm Up (Marker Boards)

1. What is an extraneous solution?

2. Solve for $x:|x-4|=12$
3. Give an example of a whole number that is not a natural number?

Essential Understanding: You can write an absolute value inequality as a compound inequality without absolute value symbols.

- less than is 'and'
- greater than is 'or'

Ex. What is the solution of $|2 x-1|<5$? Graph the solution.

Ex. What is the solution of $|3 x-4| \leq 8$? Graph the solution.

Ex. Solve $|2 x+4| \geq 6$? Graph the solution.

4 Solve: $|5 x+10|>15$
Then graph.

Concept Summary Solutions of Absolute Value Statements

Symbols	Definition	Graph
$\|x\|=a$	The distance from x to 0 is a units.	0 $x=-a$ or $x=a$
$\begin{gathered} \|x\|<a \\ (\|x\| \leq a) \end{gathered}$	The distance from x to 0 is less than a units.	
$\begin{gathered} \|x\|>a \\ (\|x\| \geq a) \end{gathered}$	The distance from x to 0 is greater than a units.	

