Lesson 1.6 Warm Up (Clickers)

1. Solve and graph: -5x - 3 + 2x > 9

2. Evaluate: | 2x - 5| when x = -1

3. Solve and graph: $9 < 3x - 5 \le 13$

Lesson 1.6 Absolute Value Equations & Inequalities

<u>Essential Understanding</u>: An absolute value quantity is nonnegative. Since opposites have the same absolute value, an absolute value equation can have two solutions.

Key Concept Absolute Value		
Definition	Numbers	Symbols
The absolute value of a real number <i>x</i> , written $ x $, is its distance from zero on the number line.	4 = 4 -4 = 4	$ x = x, \text{ if } x \ge 0$ x = -x, if x < 0
An absolute value equation has a variable within the abs value sign. For example, $ x = 5$. Here, the value of x ca 5 or -5 since $ 5 $ and $ -5 $ both equal 5.	n be Both from	5 and -5 are 5 units 0. -2-1 0 1 2 3 4 5

Ex. What is the solution of |2x - 1| = 5?

Graph the solution.

Ex. Solve |3x + 2| = 4? Graph the solutions.

1 Solve: |2x + 5| = 9

Separate your answers with a comma.

Ex. Solve: 3 | x + 2 | - 1 = 8

2 Solve 2 | x + 9 | + 3 = 7. Separate your answers with a comma.

Distance from 0 on the number line cannot be negative. Therefore, some absolute value equations, such as |x| = -5, have no solution. It is important to check the possible solutions of an absolute value equation. one ore more of the possible solutions may be <u>extraneous</u>.

An <u>extraneous solution</u> is a solution derived from an original equation that is not a solution of the original equation.

Ex. What is the solution of |3x + 2| = 4x + 5? Check for extraneous solutions.

3 What is the solution of |5x - 2| = 7x + 14? Check for extraneous solutions.

Lesson 1.6 Day 2 Warm Up (Marker Boards)

1. What is an extraneous solution?

2. Solve for x: |x - 4| = 12

3. Give an example of a whole number that is not a natural number?

<u>Essential Understanding</u>: You can write an absolute value inequality as a compound inequality without absolute value symbols.

- less than is 'and'
- greater than is 'or'

Ex. What is the solution of |2x - 1| < 5? Graph the solution.

Ex. What is the solution of $|3x - 4| \le 8$? Graph the solution.

Ex. Solve $|2x + 4| \ge 6$? Graph the solution.

4 Solve: |5x + 10| > 15

Then graph.

Concept Summary Solutions of Absolute Value Statements			
Symbols	Definition	Graph	
x = a	The distance from <i>x</i> to 0 is <i>a</i> units.	-a 0 $ax = -a or x = a$	
$ x < a$ $(x \le a)$	The distance from <i>x</i> to 0 is less than <i>a</i> units.	$\begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline -a & 0 & a \\ \hline -a < x < a \end{array}$	
$ x > a (x \ge a)$	The distance from <i>x</i> to 0 is greater than <i>a</i> units.	x > -a and x < a $-a or x < a$ $x < -a or x > a$	

August 30, 2015

Ex. Solve and then graph: 3| $4x - 2 | \ge 12$