Lesson 12.2 Warm Up (Clickers)

1. What is the surface area of a cylinder that has a diameter of 12 inches?
2. What is a tangent line?

Lesson 12.2 Chords \& Arcs

The following are numerous theorems that relate to circles. It is not necessary to memorize the theorems, but most of them should make sense. Remember, if it is a theorem, there is a proof proving it to be true.
Theorem 12-4 and Its Converse
Theorem
Within a circle or in congruent circles, congruent
central angles have congruent arcs.

Converse
Within a circle or in congruent circles, congruent
arcs have congruent central angles.
If $\angle A O B \cong \angle C O D$, then $\overparen{A B} \cong \overparen{C D}$.
If $\overparen{A B} \cong \overparen{C D}$, then $\angle A O B \cong \angle C O D$.

1 What is the value of x ?

Theorem 12-8

If \ldots

Theorem
In a circle, if a diameter
is perpendicular to a
chord, then it bisects
the chord and its arc.

You will prove Theorem 12-8 in Exercise 22.

Theorem 12-9

Theorem
In a circle, if a diameter bisects a chord (that is not a diameter), then i is perpendicular to the chord.

If ... Then..
$\overline{A B}$ is a diameter and $\overline{C E} \cong \overline{E D} \quad \overline{A B} \perp \overline{C D}$

Theorem 12-10

Theorem In a circle, the
perpendicular bisecto of a chord contains the center of the circle.
If . . .
$\overline{A B}$ is the perpendicular
bisector of chord $\overline{C D}$

Then . . .
$\overline{A B}$ contains the center of
$\odot O$

Ex. What is the value of r to the nearest tenth?

3 In circle $O, \operatorname{arc} C D=50$ and $C A=B D$. What is the measure of arc $A B$?

4 In circle $O, \operatorname{arc} C D=50$ and $C A=B D$. What is true of arcs $C A$ and $B D$?

