Chapter 2: Functions, Equations, and Graphs

Lesson 2.1 Relations and Functions

Lesson 2.2 Direct Variation

Lesson 2.3 Linear Functions and Slope-Intercept Form
Lesson 2.4 More About Linear Equations
Lesson 2.5 Using Linear Models
Lesson 2.6 Families of Functions
Lesson 2.7 Absolute Value Functions \& Graphs
Lesson 2.8 Two-Variable Inequalities

Lesson 2.1 Relations \& Functions (Clickers)

Essential Understanding: A pairing of items from two sets is special if each item from one set pairs with exactly one item from the second set.
A relation is a set of pairs of input and output values. You can represent a relation in four different ways as shown below. Key Concept Four Ways to Represent Relations

The domain of a relation is the set of inputs, also called x-coordinates, of the ordered pairs.

The range of a relation is the set of outputs, also called the y-coordinates of the ordered pairs.

Ex. What are the domain and range of the relation: (0,10000); $(4,9744)$; $(8,8976)$; $(12,7696)$

1 What is the range of the relation:

$$
(0,4),(2,6),(3,8),(10,6) ?
$$

Ex. What is the domain and range of the graphs below?
a.

b.

A function is a relation in which each element of the domain corresponds with exactly one element of the range. (For every x-value there is exactly one y-value-- y values cannot repeat with different x-values.)

Ex. $(-3,2)(0,7)(4,1)$ is a function since there is exactly one y-value for each x-value.

Ex. $(4,-1),(8,6),(1,-1),(6,6),(4,1)$ is NOT a function since -1 repeats in the y-values with different x-values.

Another way to check whether a relation is a function is by a vertical line test. The vertical line test states that if a vertical line passes through more than one point on the graph of a relation, then the relation is not a function.

3 Is the relation a function? $\{(2,-3),(5,7),(6,-8),(10,-3)\}$

Yes
No

A function rule is an equation that represents an output value in terms of an input value. You can write a function rule in function notation. Shown below are examples of function rules.

The independent variable, x, represents the input of the function. The dependent variable, $f(x)$, represents the output of the function. Its value depdends on the input value.

Ex. For $f(x)=-2 x+5$, what is the output for the inputs, $-3,0,1 / 4$?

5 For $f(x)=-4 x+1$, what is the output for $x=-2$?

6 What is the output of the following function for when $x=-2$?

$$
f(x)=x^{2}+6
$$

To model a real-world situation using a function rule, you need to identify the dependent and independent quantities. One way to describe the dependence of a variable quantity is to use a phrase such as, "distance is a function of time." This means that distance depends on time.

Ex. Tickets to a concert are available online for $\$ 35$ each plus a handling fee of $\$ 2.50$. The total cost is a function of the number of tickets bought. What function rule models the cost of the concert tickets? Evaluate the function for 4 tickets.

7 You are buying bottles of a sports drink for a softball team. Each bottle costs $\$ 1.19$. What function rule models the total cost of the purchase? Make sure to use function notation.

