Chapter 3: Linear Systems

Lesson 3.1 Solving Systems Using Tables \& Graphs

Lesson 3.2 Solving Systems Algebraically

Lesson 3.3 Systems of Inequalities

Lesson 3.4 Linear Programming

Lesson 3.5 Systems With Three Variables
Lesson 3.6 Solving Systems Using Matrices

Ex. What is the solution of the system? $\left\{\begin{array}{r}-3 x+2 y=8 \\ x+2 y=-8\end{array}\right.$

Lesson 3.1 Solving Systems Using Tables and Graphs

Essential Understanding: To solve a system of equations, find a set of values that replace the variables in the equations and make each equation true.

System of Equations is a set of two or more equations.
A solution of a system is a set of values for the variables that makes all the equations true. You can solve a system of equations graphically or by using tables.

Method 2 Use a table. Write the equations in slope-intercept form.

$$
-3 x+2 y=8
$$

$$
x+2 y=-8
$$

$$
2 y=3 x+8 \quad 2 y=-x-8
$$

$$
y_{1}=\frac{3}{2} x+4 \quad y_{2}=-\frac{1}{2} x-4
$$

Enter the equations in the $\mathbf{Y}=$ screen as $\mathbf{Y} \mathbf{1}$ and $\mathbf{Y} \mathbf{2}$. View the table. Adjust the x-values until you see $y_{1}=y_{2}$.
When $x=-4$, both y_{1} and y_{2} equal -2 . So, $(-4,-2)$ is the solution of the system.

Ex. What is the solution of the system: $x-2 y=4$?

Ex. What is the solution of the system $2 x-y=-1$?
$1 / 2 x-2=y$

Ex. The diagrams show the birth lengths and growth rates of two species of shark. If the growth rates stay the same at what age would a Spiny Dogfish and a Greenland shark be the same length?

Ex. The table shows the populations of the New York City and Los Angeles metropolitan regions from the census reports fro 1950 through 2000. Assuming these linear trends continue, when will the populations of these reqions be equal? What will that population be?

| Populations of New York City and Los Angeles (1950-2000) | | | | | | |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 |
| New York City | $12,911,994$ | $14,759,429$ | $16,178,700$ | $16,121,297$ | $18,087,251$ | $21,199,865$ |
| Los Angeles | $4,367,911$ | $6,742,696$ | $7,032,075$ | $11,497,568$ | $14,531,529$ | $16,373,645$ |

Go to Core Math Tools to input the data and then create the line of best fit. Use those equations to graph on desmos.com to find the solution.

You can classify a system of two linear equations by the number of solutions.
A consistent system
has at least one solution.
Consistent system
An inconsistent system
has no solution.
Inconsistent system

Ex. Without graphing, is the system independent, dependent, or inconsistent? (1, infinite many, or no solutions)

$$
\begin{aligned}
& 4 y-2 x=6 \\
& 8 y=4 x-12
\end{aligned}
$$

Ex. Without graphing, is the system independent, dependent, or inconsistent? (1, infinite many, or no solutions)

$$
\begin{aligned}
& 2 x+3 y=1 \\
& 4 x+y=-3
\end{aligned}
$$

