Lesson 3.7 Warm Up

1. Solve and graph: $-18<3 x-4<-4$
2. Solve and graph: $3 x>18$ or $-2 x+4>8$
3. Given $A=\{a, b, c\}$ and $B=\{a, b, c, d\}$,
a. is $A \subseteq B$?
b. is $B \subseteq A$

Lesson 3.7 Absolute Value Equations \& Inequalities
Essential Understanding: You can solve absolute value equations and inequalities by first isolating the absolute value expression, if necessary. then write an equivalent pair of linear equations or inequalities.

$$
\text { Ex. Solve: }|x|=6
$$

Ex. Solve: $2|x|-4=8$

Ex. Solve: $|x-2|=9$
Ex. Solve: $|x-2|=9$

Ex. Solve: $|x-5|+6=17$

Solve: $|x|=9$

Ex. Solve: $5|x-2|+8=23$

4 Solve: $|3 x-6|-5=-7$

Absolute value means the distance from zero and distance is NEVER negative. Thus, when you get the absolute value bars equal to a negative number, your answer will be no solution.

Ex. Solve: $3|2 x+9|+12=10$

Lesson 3.7 Day 2 Warm Up

1. Solve: $|9 x+7|=16$
2. Write in roster form the set of natural numbers less than 8.

Lesson 3.7 Day 2

Solving Absolute Value Inequalities:

To solve an inequality in the form $|A|<b$, where A is a variable expression and $b>0$, solve the compound inequality $-b<A<b$. (It is an 'and' compound inequality).

To solve an inequality in the form $|A|>b$, where A is a variable expression and $b>0$, solve the compound inequality $A<-b$ or $A>b$. (It is an 'or' compound inequality).

Before setting up the compound inequality, your first step still needs to be to get the absolute value bars by themselves.

Ex. Solve and graph: $|8 a| \geq 24$.

Ex. Solve and graph: $|x-1|<8$

Ex. Solve and graph: $|8 x-1| \leq 15$

5 Solve: $|x+4|>5$

Ex. Solve and graph: $5|x|+9>36$

Ex. A company makes boxes of crackers that should weigh 213 g . A quality-control inspector randomly selects boxes to weigh. Any box that varies from the weight by more than 5 g is sent back. What is the range of allowable weights for a box of crackers?

