Lesson 4.4 Warm Up (Clickers)

1. Describe the transformations for the parabola $y=-2 x^{2}-4$.
2. What is the vertex and axis of symmetry of $y=(x-2)^{2}+3$.
3. What is the vertex form of $y=2 x^{2}-3 x+2$?

Lesson 4.4 Factoring Quadratic Expressions

Essential Understanding: You can factor many quadratic trinomials ($a x^{2}+b x+c$) into products of two binomials.

Recall from algebra 1 when we factored a quadratic trinomial where $a=1$, your thought process was "what are factors of c that add/subtract to be b?"

$$
\text { Ex. Factor } x^{2}+9 x+20
$$

1 Factor:

$$
x^{2}+14 x+40
$$

2 Factor:
 $$
-x^{2}+14 x+32
$$

3 Factor:

$9 x^{2}+9 x-18$

When factoring any expression you should FIRST look to see if there is a GCF. Once you have the GCF factored out, look to see if you can factor it again.

Ex. Factor: $6 n^{2}+9 n \quad$ Ex. Factor: $4 x^{2}+20 x-56$

Factoring quadratic equations where $a \neq 1$ and there is no common factor takes a few more steps.

4 Factor:

$2 x^{2}-7 x+6$

A perfect square trinomial is a trinomial that is the square of a binomial. For example $x^{2}+10 x+25=(x+5)^{2}$ is a perfect square trinomial.

Key Concept Factoring Perfect Square Trinomials

$a^{2}+2 a b+b^{2}=(a+b)^{2} \quad a^{2}-2 a b+b^{2}=(a-b)^{2}$
Ex. Factor $4 x^{2}-24 x+36 \quad$ *To know whether it is a perfect square, take \sqrt{a} and \sqrt{b}. If $b=2 \sqrt{a} \sqrt{b}$, then it is a perfect square.

Ex. Factor: $64 x^{2}-16 x+1$

[^0]Ex. Factor: $81 x^{2}+36 x+4$

The previous problems were perfect square trinomials. There are also difference of perfect squares, which are binomials.

3.) Key Concept Factoring Perfect Square Trinomials

$a^{2}+2 a b+b^{2}=(a+b)^{2} \quad a^{2}-2 a b+b^{2}=(a-b)^{2}$

Ex. Factor: $16 x^{2}-49$

6 Factor:
$25 x^{2}-81$

7 Factor:
$16 x^{4}-49 y^{2}$

[^0]: 5 Factor:
 $4 x^{2}-20 x+25$

