Lesson 4.9 Warm Up (Clickers

1. Solve using the quadratic formula:
$-2 x^{2}+6 x-8=3 x$
2. Solve using completing the square:
$x^{2}-8 x+2=-8$

Lesson 4.9 Quadratic Systems

Essential Understanding: You can solve systems involving quadratic equations using methods similar to the ones used to solve systems of linear equations.

Key Concept Solutions of a Linear-Quadratic System

A system of one quadratic equation and one linear equation can have two solutions, one solution, or no solution.

Solving systems using substitution:

Ex. What is the solution of the system of equations:

$$
\begin{aligned}
& y=-x^{2}-x+6 \\
& y=x+3
\end{aligned}
$$

Ex. Solve: $y=-x^{2}-3 x+10$
$y=x+5$

1 Solve the system
 $y=x^{2}-2 x+1$ $y=x-3$

2 Solve the system:

$$
\begin{aligned}
& y=x^{2}-4 x+5 \\
& y=-x^{2}+5
\end{aligned}
$$

Solving systems by graphing (calculators):
Step 1: Graph each equation
Step 2: 2nd Calc
Step 3: Intersect

Step 4: Find the intersection of all intersecting points.

Ex. Solve by graphing:

$$
\begin{aligned}
& y=-x^{2}-x+12 \\
& y=x^{2}+7 x+12
\end{aligned}
$$

3 Solve by graphing (round answers to the neares \dagger hundredth, if needed):

$$
y=-2 x^{2}-x+5
$$

$$
y=x^{2}-3 x-3
$$

Solving systems of inequalities:

Ex. What is the solution of the system:

$$
\begin{aligned}
& y>x^{2}-2 \\
& y<-x^{2}-9 x-2
\end{aligned}
$$

Ex. What is the solution of the system:

$$
\begin{aligned}
& y \leq-x^{2}-4 x+3 \\
& y>x^{2}+3
\end{aligned}
$$

*How many solutions can a system of quadratic inequalities have?

