Lesson 5.2 Warm Up (Clickers)

1. What is the end behavior of $y=-2 x^{5}-4 x+3$?
2. Classify the polynomial according to its degree and number of terms: $-3 x^{2}$.
3. What is the vertex of the quadratic equation:

$$
y=-3 x^{2}-12 x+3 ?
$$

Lesson 5.2 Polynomials, Linear Factors, and Zeros

Essential Understanding: Find the zeros of a polynomial function will help you factor the polynomial, graph the function, and solve the related polynomial equation.

Ex. What is the factored form of $x^{3}-2 x^{2}-15 x$?

Ex. What is the factored form of $x^{3}-x^{2}-12 x$?

Key Concepts Roots, Zeros, and \boldsymbol{x}-intercepts

The following are equivalent statements about a real number b and a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

- $x-b$ is a linear factor of the polynomial $P(x)$
- b is a zero of the polynomial function $y=P(x)$.
- b is a root (or solution) of the polynomial equation $P(x)=0$.
- b is an x-intercept of the graph of $y=P(x)$.

Ex. What are the zeros of $y=(x+2)(x-1)(x-3)$? Graph the function.

Ex. What are the zeros of $x(x-3)(x+5)$?
Graph the function.
 related polynomial function.

Ex. What is a cubic polynomial function in standard form with zeros $-2,2$, and 3 ?

1 What is a quadratic polynomial function with zeros 3 and -3?

2 What is a cubic polynomial function with zeros 3, 3, and -3 ?

When there are multiple zeros with the same value, it is called a zero with multiplicity. For example, if there are two zeros with value of 3 , you would say 3 is a zero with multiplicity of 2 . In general, a is a zero of multiplicity n means that $x-a$ appears n times as a factor.

Use a graphing calculator to find the relative maximum and minimum values.

$$
f(x)=x^{3}+3 x^{2}-24 x
$$

3 What are the relative maximum and minimum of $f(x)=3 x^{3}+x^{2}-5 x ?$
(Round answers to the nearest hundredth)

Ex. The design of a digital box camera maximizes the volume while keeping the sum of the dimensions at 6 inches. If the length must be 1.5 times the height, what should each dimension be?

Ex. A metalworker wants to make an open box from a sheet of metal, but cutting equal squares from each corner as shown.
a. Write an expression for the length, width, and height of the open box.
b. Write a function for the volume.

c. Find the maximum volume of the box and the side length of the cut-out squares that generates this volume.

