Lesson 54. Warm Up (Clickers)

1. Factor: $x^{3}+125$
2. Solve for $x:-3 x^{2}+4 x-9=2$

Lesson 5.4 Dividing Polynomials

Essential Understanding: You can divide polynomials using steps that are similar to the long-division steps that you use to divide whole numbers.

Numerical long division and polynomial long division are similar.

Numerical Long Division		Polynomial Long Division	
32		$3 x+2$	
$2 1 \longdiv { 6 7 2 }$	21 divides into	$2 x + 1 \longdiv { 6 x ^ { 2 } + 7 x + 2 }$	$(2 x+1)$ divides into
63	673 times	$\underline{6 x^{2}+3 x}$	$\left(6 x^{2}+7 x\right) 3 x$ times
42	21 divides into	$4 x+2$	$(2 x+1)$ divides into
$\underline{42}$	422 times	$\underline{4 x+2}$	$(4 x+2) 2$ times
0		0	

The remainder from each division above is 0 , so 21 is a factor of 672 and $2 x+1$ is a factor of $6 x^{2}+7 x+2$.

Ex. Use polynomial long division to divide $4 x^{2}+23 x-16$ by $x+5$. What is the quotient and remainder?

Ex. Use polynomial long division to divide $3 x^{2}-29 x+56$
by $x-7$. What is the quotient and remainder?

Ex. Use polynomial long division to divide $5 x^{2}+2 x+3$ by $x+1$. What are the quotient and remainder?

1 Use polynomial long division to divide the following polynomial by $x+5$.

$$
x^{2}-3 x-40
$$

2 Divide the following polynomial by $x-4$: $x^{3}-13 x-12$

Key Concept The Division Algorithm for Polynomials

You can divide polynomial $P(x)$ by polynomial $D(x)$ to get polynomial quotient $Q(x)$ and polynomial remainder $R(x)$. The result is $P(x)=D(x) Q(x)+R(x)$.
$Q(x)$
$D (x) \longdiv { P (x) }$

$\dot{\overline{R(x)}}$

If $R(x)=0$, then $P(x)=D(x) Q(x)$ and $D(x)$ and $Q(x)$ are factors of $P(x)$.
To use long division, $P(x)$ and $D(x)$ should be in standard form with zero coefficients where appropriate. The process stops when the degree of the remainder, $R(x)$, is less than the degree of the divisor, $D(x)$.

Ex. Is $x^{2}+1$ a factor of $3 x^{4}-4 x^{3}+12 x^{2}+5$? If it is, write $P(x)$ as a product of two factors.

Ex. Is $x-2$ a factor of $P(x)=x^{5}-32$? If it is, write $P(x)$ as a product of two factors.

Ex. Is $x^{4}-1$ a factor of $P(x)=x^{5}+5 x^{4}-x-5$? If it is, write $P(x)$ as a product of two factors.

Ex. The polynomial $x^{3}+7 x^{2}-38 x-240$ expresses the volume in cubic inches, of the shadow box shown. What are the dimensions of the box?

