Chapter 6 Radical Functions \& Rational Exponents
Lesson 6.1 Roots \& Radical Expressions
Lesson 6.2 Multiplying/dividing Radical Expressions
Lesson 6.3 Binomial Radical Expressions
Lesson 6.4 Rational Exponents
Lesson 6.5 Solving Square Root \& Other Radical Equations
Lesson 6.6 Function Operations
Lesson 6.7 Inverse Relations \& Functions
Lesson 6.8 Graphing Radical Functions

Lesson 6.1 Roots \& Radical Expressions (Clickers)

Essential Understanding: Corresponding to every power, there is a root. For example, just as there are squares (second powers), there are square roots. Just as there are cubes (third powers), there are cube roots, and so on.

You use a radical sign to indicate a root. The number under the radical sign is the radicand. The index gives the degree of the root.

> index radical sign
radicand

Explain why a negative real number b has no real nth roots if n is even.

Ex. What is each real-number roots?
a. $\sqrt[4]{-1}$
b. $\sqrt[3]{-8}$
c. $\sqrt{0.04}$
d. $\sqrt{(-2)^{2}}$

3 What is the real-numbered root: $\sqrt[3]{-27}$

4 What is the real-numbered root:
$\sqrt{(-7)^{2}}$

5 What is the real-numbered root: $\sqrt[4]{-81}$

Ex. What is the simpler form of each radical expression?
a. $\sqrt{16 x^{8}}$
b. $\sqrt[3]{a^{6} b^{9}}$
c. $\sqrt[4]{x^{8} y^{12}}$

6 What is the simplified form of: $\sqrt{81 x^{4}}$

7 What is the simplified form of: $\sqrt[3]{a^{12} b^{15}}$

Property Combining Radical Expressions: Products

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$.
Ex. Simplify
a. $\sqrt[5]{-5} \cdot \sqrt[5]{-2}$
b. $\sqrt[4]{7} \cdot \sqrt[5]{7}$

Ex. Simplify: $: \sqrt{72 x^{3} y^{2}} \cdot \sqrt{10 x y^{3}}$

8 Simplify
$\sqrt{3} \sqrt{5}$

9 Simplify:
$\sqrt{5 x} \sqrt{2 x^{3}}$

[^0]
Property Combining Radical Expressions: Quotients

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\sqrt[n]{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$.
Ex.Simplify:
a. $\frac{\sqrt{18 x^{5}}}{\sqrt{2 x^{3}}}$
b. $\frac{\sqrt[3]{162 y^{5}}}{\sqrt[3]{3 y^{2}}}$

$$
\frac{\sqrt{50 x^{6}}}{\sqrt{2 x^{4}}}
$$

12 Simplify:
$\frac{\sqrt[3]{189 x^{7}}}{\sqrt[3]{7 x^{2}}}$

[^0]: 10 Simplify:
 $\sqrt[3]{2 x^{4}} \sqrt[3]{3 x^{2}}$

