Chapter 6 Radical Functions & Rational Exponents

Lesson 6.1 Roots & Radical Expressions

Lesson 6.2 Multiplying/dividing Radical Expressions

Lesson 6.3 Binomial Radical Expressions

Lesson 6.4 Rational Exponents

Lesson 6.5 Solving Square Root & Other Radical Equations

Lesson 6.6 Function Operations

Lesson 6.7 Inverse Relations & Functions

Lesson 6.8 Graphing Radical Functions

Lesson 6.1 Roots & Radical Expressions (Clickers)

Essential Understanding: Corresponding to every power, there is a root. For example, just as there are squares (second powers), there are square roots. Just as there are cubes (third powers), there are cube roots, and so on.

You use a radical sign to indicate a root. The number under the radical sign is the <u>radicand</u>. The <u>index</u> gives the degree of the root.

radicand

radical sign

1 What is the real cube root of -64?

2 What is the real fourth root of -10000?

Explain why a negative real number ${\sf b}$ has no real nth roots if ${\sf n}$ is even.

Ex. What is each real-number roots?

a.
$$\sqrt[4]{-1}$$

b.
$$\sqrt[3]{-8}$$

c.
$$\sqrt{0.04}$$

d.
$$\sqrt{(-2)^2}$$

3 What is the real-numbered root: $\sqrt[3]{-27}$

4 What is the real-numbered root: $\sqrt{(-7)^2}$

5 What is the real-numbered root: $\sqrt[4]{-81}$

Ex. What is the simpler form of each radical expression?

a.
$$\sqrt{16x^8}$$

b.
$$\sqrt[3]{a^6b^9}$$

c.
$$\sqrt[4]{x^8y^{12}}$$

6 What is the simplified form of: $\sqrt{81x^4}$

7 What is the simplified form of: $\sqrt[3]{a^{12}b^{15}}$

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.

Ex. Simplify:
$$\sqrt{72x^3y^2} \cdot \sqrt{10xy^3}$$

Ex. Simplify

a.
$$\sqrt[5]{-5} \cdot \sqrt[5]{-2}$$

8 Simplify:
$$\sqrt{3}\sqrt{5}$$

9 Simplify:
$$\sqrt{5x}\sqrt{2x^3}$$

10 Simplify: $\sqrt[3]{2x^4}\sqrt[3]{3x^2}$

Property Combining Radical Expressions: Quotients

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$

Ex.Simplify: a. $\frac{\sqrt{18x^5}}{\sqrt{2x^3}}$

b. $\frac{\sqrt[3]{162y}}{\sqrt[3]{3y^2}}$

11 Simplify: $\frac{\sqrt{50x^6}}{\sqrt{2x^4}}$

 $12 Simplify: \frac{\sqrt[3]{189x^7}}{\sqrt[3]{7x^2}}$