Lesson 6.2 Properties of Parallelograms

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. There are special properties for parallelograms.

Theorem 6.3: If a quadrilateral is a parallelogram, then its opposite sides are congruent.

Theorem 6.4: If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

Theorem 6.5: If a quadrilateral is a parallelogram, then its opposite angles are equal.

Theorem 6.6: If a quadrilateral is a parallelogram, then its diagonals bisect each other.

1 Given the parallelogram below, what is the measure of $<A$?

[^0]

Use the diagram of $\square A B C D$ to find each value.
$\begin{array}{ll}\text { 1. } m \angle A & \text { 2. } m \angle D\end{array}$
$\begin{array}{ll}\text { 3. } x & \text { 4. } A B\end{array}$

Theorem 6-7

Theorem
If three (or more) parallel
lines cut off congruent
segments on one
transversal, then they cut off congruent segments on every transversal.
If...
$\overleftrightarrow{A B}\|\overleftrightarrow{C D}\| \overleftrightarrow{E F}$ and $\overline{A C} \cong \overline{C E}$

Then \ldots
$\overline{B D} \cong \overline{D F}$

In the figure, $\overleftrightarrow{A E}\|\overleftrightarrow{B F}\| \overleftrightarrow{C G} \| \overleftrightarrow{D H}, A B=B C=C D=2$, and $E F=2.25$. What is $E H$?

4 From the parallelogram below, find $m<A$.

CHALLENGE: Given the parallelogram below, find the values of x and y. What are KM and LN?

[^0]: Use the diagram at the right.
 Given: $\square A B C D, \overline{A K} \cong \overline{M K}$
 Prove: $\angle B C D \cong \angle C M D$

