Lesson 6.3 Binomial Radical Expressions (Clickers)

Essential Understanding: You can combine like radicals using properties of real numbers.

Property Combining Radical Expressions: Sums and Differences

Use the Distributive Property to add or subtract like radicals.

$$
a \sqrt[n]{x}+b \sqrt[n]{x}=(a+b) \sqrt[n]{x} \quad a \sqrt[n]{x}-b \sqrt[n]{x}=(a-b) \sqrt[n]{x}
$$

Ex. What is the simplified form of each expression?

$$
\begin{array}{lll}
\text { a. } 3 \sqrt{5 x}-2 \sqrt{5 x} & \text { b. } 6 x^{2} \sqrt{7}+4 x \sqrt{5} & \text { c. } \quad 12 \sqrt[3]{7 x y}-8 \sqrt[5]{7 x y}
\end{array}
$$

1 Simplify:
$7 \sqrt[3]{5}-4 \sqrt[3]{5}$

A conjugate is when the binomials are the same but their signs are different. Multiplying conjugates cancels the 'outside', 'inside' terms of FOIL.

$$
\text { Ex. }(5-\sqrt{ } 7)(5+\sqrt{ } 7)
$$

3 Simplify:

$(5-\sqrt{11})(5+\sqrt{11})$

4 Simplify:
$(3+\sqrt{5})(1+\sqrt{5})$

Rationalizing the denominator of a radical expressions means getting the radical out of the denominator.

Ex. Rationalize the denominator.

a. $\frac{\sqrt{x}}{\sqrt{2}}$
b. $\sqrt{5}$
$\sqrt{8 x}$

6 Rationalize the denominator:
$\frac{\sqrt{7}}{\sqrt{3 x}}$

