Lesson 6.4 Warm Up

Simplify:

1. $\sqrt{5}x^*\sqrt{8}x^2$

2. $(2 + \sqrt{3})(4 - 2\sqrt{3})$

3. $(2xy)^3(4x^2y)$

Lesson 6.4 Rational Exponents (Clickers)

<u>Essential Understanding:</u> You can write a radical expression in an equivalent form using a fractional (rational) exponent instead of a radical sign.

In general, $\sqrt[n]{x} = x^{\frac{1}{n}}$ for any positive integer n. Like the radical form, the exponent form indicates the principal root.

$$\sqrt{36} = 36^{\frac{1}{2}}$$

$$\sqrt[3]{64} = 64^{\frac{1}{3}}$$

$$\sqrt[4]{16} = 16^{\frac{1}{4}}$$

Key Concept Rational Exponent

If the nth root of a is a real number, m is an integer, and $\frac{m}{n}$ is in lowest terms, then $a^{\frac{1}{n}} = \sqrt[n]{a}$ and $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$. If m is negative, $a \neq 0$.

*The denominator is the root. The numerator is the exponent.

Ex. What are $x^{\frac{3}{7}}$ and $y^{-3.5}$ in radical form?

 E_{X} . What are $\sqrt{a^5}$ and $(\sqrt[5]{b})^3$ in exponential form?

1	Put	the	follo	owina	in	radical	form

$$r^{\frac{5}{8}}$$

2 Put the following in radical form.
$$\boldsymbol{x}^{0.2}$$

- 3 Write the expression in exponential form.
 - $\sqrt[4]{x^3}$

4 Write in exponential form: $(\sqrt[5]{y})^4$

Properties Properties of Rational Exponents

Let m and n represent rational numbers. Assume that no denominator equals 0.

Property

Property
 Example
 Property

$$a^m \cdot a^n = a^{m+n}$$
 $8^{\frac{1}{3}} \cdot 8^{\frac{2}{3}} = 8^{\frac{1}{3} + \frac{2}{3}} = 8^1 = 8$
 $a^{-m} = \frac{1}{a^m}$

Example
$$9^{\frac{1}{2}} = \frac{1}{9^{\frac{1}{2}}} = \frac{1}{3}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(a^{m})^{n} = a^{mn} \qquad (5^{\frac{1}{2}})^{4} = 5^{\frac{1}{2} \cdot 4} = 5^{2} = 25 \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \qquad \frac{7^{\frac{3}{2}}}{7^{2}} = 7^{\frac{3}{2} \cdot \frac{1}{2}} = 7^{1} = 7$$

$$(ab)^{m} = a^{m}b^{m} \qquad (4 \cdot 5)^{\frac{1}{2}} = 4^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} = 2 \cdot 5^{\frac{1}{2}} \qquad (\frac{a}{b})^{m} = \frac{a^{m}}{b^{m}} \qquad (\frac{5}{27})^{\frac{1}{3}} = \frac{5^{\frac{1}{4}}}{27^{\frac{3}{4}}} = \frac{5^{\frac{1}{4}}}{3}$$

Ex. Simplify
$$\frac{\sqrt[4]{x^3}}{\sqrt[8]{x^2}}$$

Ex. Simplify:

$$a. \frac{\sqrt{x^3}}{\sqrt[3]{x^2}}$$

b.
$$\sqrt{3}\left(\sqrt[4]{3}\right)$$

5 Simplify:

$$\sqrt{7}(\sqrt[3]{7})$$

Ex. What is each expression in simplest form?

a.
$$\left(-8x\sqrt{xy}\right)^{\frac{2}{3}}$$

b.
$$(16y^{-8})^{-\frac{3}{4}}$$

6 Write in simplified radical form:

$$(8x^{15})^{-\frac{1}{3}}$$

7 Write in simplest radical form: $(9\sqrt[4]{y})^{\frac{3}{2}}$

$$(9\sqrt[4]{y})^{\frac{3}{2}}$$