Lesson 6.7 Warm Up (Clickers)

1. Simplify: $\sqrt{5}x\sqrt{8}x^3$

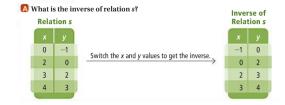
2. Solve: $\sqrt{(x+4)} - 2 = x$

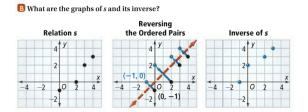
3. Given f(x) = 3x - 2 and $g(x) = -x^2$. Find $(f \circ g)(-3)$.

Lesson 6.7 Inverse Relations & Functions

<u>Essential Understanding</u>: The inverse of a function may or may not be a function.

If a relation pairs element a of its domain to element b of its range, the <u>inverse relation</u> pairs b with a. So, if (a, b) is an ordered pair of a relation, then (b, a) is an ordered pair of its inverse. If both a relation and its inverse happen to be functions, they are <u>inverse functions</u>.





Ex. What are the graphs of t and its inverse?

Relation t

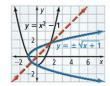
*Is t a function? Is the inverse of t a function? Explain.

As you have seen in the previous graphs, the graphs of a relation and its inverse are the reflections of each other in the line y = x. If you describe a relation or function by an equation in x and y, you can switch x and y to get an equation for the inverse.

Ex. What is the inverse of the relation described by $y=x^2-1$?

Ex. What are the graphs of $y = x^2 - 1$ and its inverse

$$y = +/-\sqrt{(x+1)}$$
?



Ex. What are the graphs y = 2x + 8 and its inverse?

The inverse of a function f(x) is denoted by f^{-1} . You read f^{-1} as "the inverse of f" or as "f inverse". The notation f(x) is used for functions, but the relation f^{-1} may not even be a function.

- Ex. Consider the function $f(x) = \sqrt{x-2}$.
 - a. What are the domain and range of f?
 - b. What are the domain and range of f^{-1} ?
 - c. Is f-1 a function? Explain.

2	Given	f(v) -	- 6 1	What is	a +ha i	damaina

3 Given
$$f(x) = 6 - 4x$$
. What is the range?

4 Given f(x) = 6 - 4x. What is the domain of g inverse?

5 Is g inverse a function?

Yes

No

You know that for any function f_i each x-value in the domain corresponds to exactly one y-value in the range. For a **one-to-one function**, it is also true that each y-value in the range corresponds to exactly one x-value in the domain. A one-to-one function f has an inverse f^{-1} that is also a function. If f maps a to b, then f^{-1} must map b to a.

take note

Key Concept Composition of Inverse Functions

If f and f^{-1} are inverse functions, then $(f^{-1}\circ f)(x)=x \text{ and } (f\circ f^{-1})(x)=x \text{ for } x \text{ in the domains of } f \text{ and } f^{-1}, \text{ respectively.}$

This says that the composition of a function and its inverse is essentially the identity function, id(x) = x, or y = x.

Ex. For
$$f(x) = \frac{1}{x-1}$$
, what is each of the following?
Is $f(x)$ one-to-one?

a.
$$f^{-1}(x)$$

b.
$$(f \circ f^{-1})(x)$$
 c. $(f^{-1} \circ f)(x)$

Ex. Let
$$g(x) = \frac{4}{x+2}$$
. Is $g(x)$ one-to-one?