Chapter 7 Exponential \& Logarithmic Functions

7-1 Exploring Exponential Models

7-2 Properties of Exponential Functions
7-3 Logarithmic Functions as Inverses
7-4 Properties of Logarithms
7-5 Exponential and Logarithmic Equations
7-6 Natural Logarithms

Exponential Growth/Decay:

$A(\dagger)=a(1+r)^{\dagger}$, where a is initial amount,
r is rate of growth $(r>0)$
or decay ($r<0$), and
t is number of time periods
Ex. You invested $\$ 1000$ in a saving account at the end of 6 th grade. The account pays 5% annual interest. How much money will be in the account after six years?

Lesson 7.1 Exploring Exponential Models

Essential Understanding: You can represent repeated multiplication with a function of the form $y=a b^{\times}$where b is a positive number other than 1 .

An exponential function is a function with the general form $y=a b^{x}, a \neq 0$, with $b>0$, $a n d b \neq 1$. In an exponential function the base b is a constant. The exponent x is the independent variable with domain the set of real numbers. If $b>1$, it is an exponential growth function and if $0<b<1$, it is an exponential decay.

Ex. The population of a city in 2000 was 42,799 .
Unfortunately, people are moving out of the city at a rate of 1.5% per year. How many residents will the city have in 2020?

Ex. Suppose you invest $\$ 1000$ in a savings account that pays 5% annual interest. If you make no additional deposits or withdrawals, how many years will it take for the account to grow to at least $\$ 1500$? (Use a graphing calculator)

Ex. Graph $y=2^{x}$.

x	y
-3	
-2	
-1	
0	
1	
2	
3	

