Lesson 7.3 Logarithmic Functions as Inverses

<u>Essential Understanding</u>: The exponential function $y = b^x$ is one-to-one, so its inverse $x = b^y$ is a function. To express "y as a function of x" for the inverse, write $y = \log_b x$.

Key Concept Logarithm

N.S.

A **logarithm** base *b* of a positive number *x* satisfies the following definition. For b > 0, $b \neq 1$, $\log_b x = y$ if and only if $b^y = x$.

You can read $\log_b x$ as "log base b of x." In other words, the logarithm y is the exponent to which b must be raised to get x.

Ex. What is the logarithm form of $100 = 10^2$?

Ex. What is the logarithm form of 81 = 34?

1 What is the logarithmic form of $36 = 6^2$?

2 What is the logarithmic form of $1 = 3^0$

 $\ensuremath{\mathsf{3}}$ What is the logarithmic form of

$$\frac{8}{27} = (2/3)^3$$

Ex. What is the value of log_32?

Ex. What is the value of log_5125?

4 What is the log value of $\log_4 32?$

5 What is the value of $\log_{16} 64$?

Exponential and logarithmic functions are inverses of each other. Therefore, the exponential function reflected over the equation y = x is the graph of the logarithmic function, as shown below.

The graph shows $y = 10^{\times}$ and $y = \log x$.

Ex. What is the graph of $y = \log_3 x$? Describe the domain and range and identify the y-intercept and the asymptote.

Ex. What is the graph of y = log4x? Describe the domain, range, y-intercept and asymptote.

_													-	
_														
	H										H		-	
				F			П							
-							H				H			
							Н							
	F	-	-	-	-		F	F	-	-	-	-	-	-
				-					_					
													-	
													-	
													-	

Concept Summary Fam	ilies of Logarithmic Functions
Parent functions:	$y = \log_b x, b > 0, b \neq 1$
Stretch $(a > 1)$ Compression (Shrink) $(0 < a < 1)$ Reflection $(a < 0)$ in <i>x</i> -axis	$y = a \log_b x$
Translations (horizontal by h ; vertical by k)	$y = \log_b (x - h) + k$
All transformations together	$y = a \log_b (x - h) + k$

Ex. How does the graph of $y = \log_4(x - 3) + 4$ compare to the graph of the parent function?