Lesson 7.4 Warm Up (Clickers)

1. Simplify: $\sqrt{ } 5^{*} \sqrt{ } 10$
2. Write the logarithm for $5^{3}=125$.
3. Find $\log _{3} 81$.

Lesson 7.4 Properties of Logarithms

Essential Understanding: Logarithms and exponents have corresponding properties.

Properties Properties of Logarithms

For any positive numbers m, n, and b where $b \neq 1$, the following properties apply.
Product Property $\quad \log _{b} m n=\log _{b} m+\log _{b} n$
Quotient Property $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
Power Property $\quad \log _{b} m^{n}=n \log _{b} m$

What is each expression written as a single logarithm?

1. $\log _{4} 32-\log _{4} 2$

1 What is the expression as a single logarithm? $\log _{5} 4 y-\log _{5} 2 y$

2 What is the expression written as a single logarithm? $2 \log _{4} 6-\log _{4} 9$

3 What is the logarithm expanded? $\log _{3} 9 x$

4 What is the logarithm expanded?
$\log _{5}(125 / x)$

5 What is the logarithm expanded? $\log x^{2} y^{2}$

You have seen logarithms with many bases. The 'log' key on a calculator find $\log _{10}$ of a number. To evaluate a logarithm with any base, use the Change of Base Formula.

Property Change of Base Formula

For any positive numbers m, b, and c, with $b \neq 1$ and $c \neq 1$,

$$
\log _{b} m=\frac{\log _{c} m}{\log _{c} b}
$$

Ex. What is the value of the expression $\log _{81} 27$?
Solution: Use calculator--log27/log81
$=0.75$

