Lesson 7.5 Warm Up (Clickers)

1. Write the following as a single logarithm:

```
\mp@subsup{\operatorname{log}}{3}{}15xy
```

2. Expand: $\log _{4}(3 x)^{2}$
3. You invested $\$ 2000$ into an account that has an interest rate of 3.2%. How much money will you have in the account after 5 years?

Lesson 7.5 Exponential \& Logarithmic Equations

Essential Understanding: You can use logarithms to solve exponential equations. you can use exponents to solve logarithmic equations.

Ex. What is the solution of $16^{3 x}=8$?

1 What is the solution of the following equation? $4^{3 x}=64$

When bases are not the same, you can solve an exponential equation by taking the logarithm of each side of the equation. If m and n are positive and $m=n$, then $\log m=\log n$.

Ex. What is the solution of $15^{3 x}=285$?

What is the solution of the following equation? Round to four decimal places.
$6^{4 x}=512$

You could also solve using a graphing calculator.
Ex. What is the solution of $4^{3 x}=6000$?

Ex. Wood is sustainable, renewable, natural resource when you manage forests properly. Your lumber company has $1,200,000$ trees. You plan to harvest 7% of the trees each year. How many years will it take to harvest half of the trees?

A logarithmic equation is an equation that includes one or more logarithms involving a variable.

Ex. What is the solution of $\log (4 x-3)=2$?
*Check your solution with a graphing calculator.

