Lesson 7.6 Natural Logs (Clickers)

Essential Understanding: The functions $y=e^{x}$ and $y=\ln x$ are inverse functions. Just as before, this means that if a $=e^{b}$, then $b=\ln a$, and vice versa.

The function $y=e^{x}$ has an inverse, the natural logarithmic function, $y=\log _{e} x$ or $y=\ln x$.

Ex. What is $2 \ln 15-\ln 75$ written as a single natural logarithm?

1 What is the expression written as a single natural logarithm? $\ln 7+2 \ln 5$

2 What is the expression written as a single natural logarithm?
$3 \ln x+2 \ln y+\ln 5$
*You can use the inverse relationship between the functions $y=\ln x$ and $y=e^{x}$ to solve certain logarithmic and exponential equations.

Ex. What are the solutions of $\ln (x-3)^{2}=4$?

3 What is the solution of $\ln x=2$? (Round to the nearest hundredth.)

4 What is the solution of $\ln 2 x+\ln 3=2$? (Round to the nearest hundredth)

What is the solution of $e^{3 x}+5=15$? (Round to the nearest hundredth)

Natural logarithms are useful because they help express many relationships in the physical world.
Ex. A spacecraft can attain a stable obit 300 km above Earth if it reaches a velocity of $7.7 \mathrm{~km} / \mathrm{s}$. The formula for a rocket's maximum velocity v in kilometers per second is $v=-0.0098 t+c \ln R$. The booster rocket fires for t seconds and the velocity of the exhaust is $\mathrm{ckm} / \mathrm{s}$. The ratio of the mass of the rocket filled with fuel to its mass without fuel is R. Suppose a rocket has a mass ratio of 25 , a firing time of 100 s and an exhaust velocity of $2.8 \mathrm{~km} / \mathrm{s}$. Can the spacecraft attain a stable orbit 300 km above Earth?

