Lesson 8.2 The Reciprocal Function Family (Clickers)

<u>Essential Understanding:</u> Transformations of the parent reciprocal function include stretches, compressions (or shrinks), reflections, and horizontal and vertical translations.

Ke none

Key Concept General Form of the Reciprocal Function Family

The general form of a member of the reciprocal function family is $y = \frac{a}{x-h} + k$, where $x \neq h$.

The inverse variation functions, $y=\frac{a}{x}$, are stretches, shrinks, and reflections of the parent reciprocal function, depending on the value of a.

The graph of the parent reciprocal function $y = \frac{1}{x}$ is shown at the right.

Ex. What is the graph of y = 8/x, $x \ne 0$? Identify the x-and y-intercepts and the asymptotes of the graph. Also, state the domain and range.

y-intercepts:

asymptotes:

domain:

range:

Ex. What is the graph of y = -6/x, $x \ne 0$? Identify the x-and y-intercepts and the asymptotes of the graph. Also, state the domain and range.

x-intercepts:

y-intercepts:

asymptotes:

domain:

range:

1 Would the function y = 6/x have the same domain and range as y = 8/x or y = 12/x?

Yes

No

Each part of the graph of a reciprocal function is a <u>branch</u>. The branches of the parent function y = 1/x are in Quadrants I and III. Stretches and compressions of the parent function remain in the same quadrants. Reflections are in Quadrants II and IV.

Ex. How does y = 8/x compare to the graph of y = 1/x?

Ex. How does y = -0.25/x compare to the graph of y = 1/x?

The following is review of the different transformations on graphs that can be applied to reciprocal functions.

Key Concept The Reciprocal Function Family	
Parent function	$y=\frac{1}{x}, x\neq 0$
$\left.\begin{array}{l} \text{Stretch}\left(\left \left.a\right \right.>1\right)\\ \text{Shrink}\left(0<\left \left.a\right \right.<1\right)\\ \text{Reflection}\left(a<0\right) \operatorname{across}x\text{-axis} \end{array}\right\}$	$y = \frac{a}{x}, x \neq 0$
Translation (horizontal by h ; vertical by k) with vertical asymptote $x = h$ horizontal asymptote $y = k$	$y = \frac{1}{x - h} + k; x \neq h$
Combined	$y = \frac{a}{x-h} + k; x \neq h$

Ex. What is the graph of $y = \frac{1}{x+1} - 2$? Identify the domain and range. (hint: identify the asymptote(s) first)

Ex. What is the graph of $y = \frac{1}{x-4} + 62$ Identify the domain and range. (hint: identify the asymptote(s) first)

If you know the asymptotes of the graph of a reciprocal function and the value of a, you can write the equation of the function.

Multiple Choice This graph of a function is a translation of the graph of $y = \frac{2}{x}$. What is an equation for the function?

(A)
$$y = \frac{2}{x+3} + 4$$

(B) $y = \frac{2}{x+3} - 4$

$$y = \frac{2}{x-3} +$$

$$\mathbf{B} \quad y = \frac{x}{x+3} -$$

$$y = \frac{x-3}{x-3} - 4$$
D $y = \frac{2}{x-3} - 4$

Ex. The rowing club is renting a 57-passenger bus for a day trip. The cost of the bus is \$750. Five passengers will be chaperones. If the students who attend share the bus cost equally, what function models the cost per student Cwith respect to the number of students n who attend? What is the domain of the function? How many students must ride the bus to make the cost per student no more than \$20?

2 This graph of a function is a translation of the graph of y = 2/x. What is an equation for the function?

