Lesson 8.3 Warm Up (Marker Boards)

1. Given $(-2,3)$ and $(5, y)$ and that the points come from an inverse variation equation, what is the value of y ?
2. Locate the asymptotes and state the domain and range for the function: $y=\frac{3}{x-2}+5$

Lesson 8.3 Rational Functions and Their Graphs

Essential Understanding: If a function has a polynomial in its denominator, its graph has a gap at each zero of the polynomial. The gap could be a one-point hole in the graph, or it could be the location of a vertical asymptote for the graph.

A rational function is a function thta you can write in teh form $f(x)=\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials.

$$
\overline{Q(x)}
$$

The domain of $f(x)$ is all real numbers except those values for which $Q(x)=0$.

Here are graphs of three rational functions:

$y=\frac{(x+3)(x+2)}{(x+2)}$ $y=\frac{x+4}{x-2}$

There is no value of x such that the denominator is equal to zero. Thus the graph is continuous.

Since the graph is undefined at $x=-2$, this graph is discontinuous.

[^0]Ex. What are the domain and points of discontinuity of each rational function? Are the points of discontinuity removable or non-removable? What are the x - and y intercepts? $y=\frac{x+3}{x^{2}-4 x+3}$

Ex. What are the domain and points of discontinuity of each rational function? Are the points of discontinuity removable or non-removable? What are the x - and y intercepts? $y=\frac{x-5}{x^{2}+1}$

Ex. What are the domain and points of discontinuity of each rational function? Are the points of discontinuity removable or non-removable? What are the x - and y intercepts? $y=\frac{x^{2}-1}{x^{2}+3}$

Key Concept Vertical Asymptotes of Rational Functions

The graph of the rational function $f(x)=\frac{P(x)}{Q(x)}$ has a vertical asymptote at each real zero of $Q(x)$ if $P(x)$ and $Q(x)$ have no common zeros. If $P(x)$ and $Q(x)$ have $(x-a)^{m}$ and $(x-a)^{n}$ as factors, respectively and $m<n$, then $f(x)$ also has a vertical asymptote at $x=a$.

Ex. What are the vertical asymptotes for the graph of

$$
y=\frac{(x+1)}{(x-2)(x-3)} ?
$$

Ex. What are the vertical asymptotes for the function

$$
y=\frac{x^{2}-1}{x+1} ?
$$

Lesson 8.3 Continued Warm Up

Ex. What are the vertical asymptotes of the function

$$
y=\frac{(x-2)}{x^{2}+2 x-3} ?
$$

point(s) of discontinuity.

$$
y=\frac{x+5}{x^{2}+9 x+20}
$$

2. Find the vertical asymbtotes of the graph of the function $y=\frac{x-3}{x^{2}+5 x+6}$
3. Determine whether the function has removable or non-removable discontinuity. $y=\frac{2 x^{2}+5}{x^{2}-2 x}$

While the graph of a rational function can have any number of vertical asymptotes, it can have no more than one horizontal asymptote.

Ke hote Key Concept Horizontal Asymptote of a Rational Function

To find the horizontal asymptote of the graph of a rational function, compare the degree of the numerator m to the degree of the denominator n.
If $m<n$, the graph has horizontal asymptote $y=0$ (the x-axis).
If $m>n$, the graph has no horizontal asymptote.
If $m=n$, the graph has horizontal asymptote $y=\frac{a}{b}$ where a is the coefficient of the term of greatest degree in the numerator and b is the coefficient of the term of greatest degree in the denominator.
Ex. What is the horizontal asymptote for the rational function? $y=\frac{2 x}{x-3}$

Ex. What is the horizontal asymptote for the rational function? $y=\frac{x-2}{x^{2}-2 x-3}$

Ex. What is the horizontal asymptote for the rational function? $y=\frac{x^{2}}{2 x-5}$

Ex. What is the horizontal asymptote for the rational function? $y=\frac{-2 x+6}{x-5}$

Ex. What is the horizontal asymptote for the rational function?

$$
\frac{x-1}{x^{2}+4 x+4}
$$

Essential Understanding: You can get a reasonable graph for a rational function by finding all intercepts and asymptotes. Sometimes you will also have to plot a few extra points to get a good sense of the shape of the graph.
Ex. What is the graph of the rational function $y=\frac{x^{2}+x-12}{x^{2}-4}$?

Ex. What is the graph of $y=\frac{x+3}{x^{2}-6 x+5}$?

Ex. What is the graph of the function $y=\frac{4 x}{x^{3}-4 x}$?

[^0]: Key Concept Point of Discontinuity
 If a is a real number for which the denominator of a rational function $f(x)$ is zero, then a is not in the domain of $f(x)$. The graph of $f(x)$ is not continuous at $x=a$ and the function has a point of discontinuity at $x=a$.

 The graph of $y=\frac{(x+3)(x+2)}{x+2}$ has a removable discontinuity at $x=-2$. The hole in the graph is called a removable discontinuity because you could make the function continuous by redefining it at $x=-2$ so that $f(-2)=1$.

 The graph of $y=\frac{x+4}{x-2}$ has a non-removable discontinuity at $x=2$. There is no way to redefine the function at 2 to make the function continuous.

 When you are looking for discontinuities, it is helpful to factor the numerator and denominator as a first step. The factors of the denominator will reveal the points of discontinuity. The discontinuity caused by $(x-a)^{n}$ in the denominator is removable if the numerator also has $(x-a)^{n}$ as a factor.

