Lesson 9.3 Warm Up (Clickers)

1. Simplify: $2 x-8+\underline{3}$
$x-2 \quad x-4$
2. Identify any holes and asymptotes:
$\frac{x^{2}-16}{x^{2}+x-20}$

Lesson 9.3 Geometric Sequences

Essential Understanding: In a geometric sequence, the ratio of any term to its preceding term is a constant value.

Key Concept Geometric Sequence

A geometric sequence with a starting value a and a common ratio r is a sequence of the form
$a, a r, a r^{2}, a r^{3}$,
A recursive definition for the sequence has two parts:
$a_{1}=a$
initial condition
$a_{n}=a_{n-1} \cdot r$, for $n>1 \quad$ recursive formula
An explicit definition for this sequence is a single formula: $a_{n}=a_{1} \cdot r^{n-1}$, for $n \geq 1$

1 Is the sequence geometric?
2, 4, 8, 16,

Yes
No
b. $3,6,9,12,15, \ldots$

2 Is the sequence geometric? $1,5,9,13,17, \ldots$.

Yes
No

Ex. What are the indicated terms of the geometric sequence?
a. the 10th term of the geometric sequence $4,12,36, \ldots$
b. the second and third terms of the geometric sequence 2, \qquad
\qquad -54, ..

3 What is the second term of the geometric sequence 3, 12?

4 What are the 2nd and 3rd terms of the geometric
sequence 2 \qquad $128, \ldots ?$

Ex. When a ball bounces, the heights of consecutive bounces form a geometric sequence. What are the heights of the 4th and 5th bounces?

